Irreducible polynomials over $GF(4)$ with given trace and subtrace

Let $p(x)$ be a polynomial of degree $n$. The trace of $p(x)$ is the coefficient of $x^{n-1}$. The subtrace of $p(x)$ is the coefficient of $x^{n-2}$. Below we use $a=\operatorname{root}(x^2+x+1)$ and $b=1+a$.

(trace,subtrace)
$n$ (0,0)(0,1)
(0,$a$)
(0,$b$)
(1,0)
($a$,0)
($b$,0)
(1,1)
($a$,$b$)
($b$,$a$)
(1,$a$)
(1,$b$)
($a$,1)
($a$,$a$)
($b$,1)
($b$,$b$)
1 10 100
2 00 001
3 21 121
4 04 444
5 1512 151212
6 4040 404045
7 153144 144153 144
8 480512 512512 512
9 18411813 18411813 1813
10 65286528 65286528 6579
11 2390123808 2380823901 23808
12 8704087380 8738087380 87380
13 322875322560 322875322560 322560
14 11980801198080 11980801198080 1198665
15 44747384473647 44736474474738 4473647
16 1677312016777216 1677721616777216 16777216

Examples

Monic irreducible polynomials over $GF(4)$ of degree $n=2$. Let $r =\operatorname{root}(x^2+x+a)$. Then $r^4=r+1$.

(trace,subtrace)
(1,$a$) $x^2+x+a=(x+r)(x+r+1)$
(1,$b$) $x^2+x+b=(x+r+a)(x+r+b)$
($a$,1) $x^2+ax+1=(x+ar)(x+ar+a)$
($a$,$a$) $x^2+ax+a=(x+ar+1)(x+ar+b)$
($b$,1) $x^2+bx+1=(x+br+1)(x+br+a)$
($b$,$b$) $x^2+bx+b=(x+br)(x+br+b)$

Monic irreducible polynomials over GF(4) of degree $n=3$.

(trace,subtrace)
(0,0) $x^3+a$ $x^3+b$
(0,1) $x^3+x+1$
(0,$a$) $x^3+ax+1$
(0,$b$) $x^3+bx+1$
(1,0) $x^3+x^2+1$
(1,1) $x^3+x^2+x+a$ $x^3+x^2+x+b$
(1,$a$) $x^3+x^2+ax+b$
(1,$b$) $x^3+x^2+bx+a$
($a$,0) $x^3+ax^2+1$
($a$,1) $x^3+ax^2+x+b$
($a$,$a$) $x^3+ax^2+ax+a$
($a$,$b$) $x^3+ax^2+bx+a$ $x^3+ax^2+bx+b$
($b$,0) $x^3+bx^2+1$
($b$,1) $x^3+bx^2+x+a$
($b$,$a$) $x^3+bx^2+ax+a$ $x^3+bx^2+ax+b$
($b$,$b$) $x^3+bx^2+bx+b$

Enumeration (OEIS)

Data source: Entries for $n=1,2,...,9$ were done by exhaustive Maple program (also $n=10$ entries (0,$x$)). For $n$ odd entries match corresponding entries on the Lyndon words over $GF(4)$ page via a theorem of Miers and Ruskey. Some of the others are educated guesses.