Lyndon words over $GF(4)$ with given trace and subtrace

Here we consider the number $L(n;t,s)$ of length $n$ Lyndon words $a_1 a_2 \ldots a_n$ over the alphabet consisting of the elements of the field $GF(4)$ that have trace $t$ and subtrace $s$. The trace of a Lyndon word is the sum of its digits over the field, i.e., $t = a_1 + a_2 + \cdots + a_n$. The subtrace is the sum of the products of all $n(n-1)/2$ pairs of digits taken over the field, i.e., $s=\sum_{1\leq i\lt j\leq n} a_i a_j$. Below we use $a=\operatorname{root}(x^2+x+1)$ and $b=1+a$.

(trace,subtrace)
$n$ (0,0) (0,1)
(0,$a$)
(0,$b$)
(1,0)
($a$,0)
($b$,0)
(1,1)
($a$,$b$)
($b$,$a$)
(1,$a$)
(1,$b$)
($a$,1)
($a$,$a$)
($b$,1)
($b$,$b$)
1 10 10 0
2 00 11 0
3 21 12 1
4 62 44 4
5 1512 1512 12
6 4040 4545 40
7 153144 144153 144
8 528496 512512 512
9 18411813 18411813 1813
10 65286528 65796579 6528
11 2390123808 2380823901 23808
12 8755087210 8738087380 87380
13 322875322560 322875322560 322560
14 11980801198080 11986651198665 1198080
15 44747384473647 44736474474738 4473647

Examples

The one 4-ary Lyndon word of trace $b$, subtrace $a$ and length 2 is $\{1a\}$. The two 4-ary Lyndon words of trace 0, subtrace 0 and length 3 are $\{123, 132\}$. The two 4-ary Lyndon words of trace 0, subtrace 1 and length 4 are $\{0011, 11aa\}$.

Enumeration (OEIS)