Binary words with given trace and subtrace
Here we consider the number $S(n;t,s)$ of length $n$ words $a_1 a_2\ldots a_n$ over the alphabet $\{0,1,\ldots,k-1\}$ with $k=2$ that have trace $t$ and subtrace $s$.
The
trace of a $k$-ary word is the sum of its digits mod $k$, i.e., $t=a_1+a_2+\cdots+a_n \pmod{k}$.
The
subtrace is the sum of the products of all $n(n-1)/2$ pairs of digits taken mod $k$, i.e., $s=\sum_{1\leq i\lt j\leq n} a_i a_j$.
| (trace,subtrace) |
$n$
| (0,0)
| (0,1)
| (1,0)
| (1,1)
|
1 |
1 | 0 | 1
| 0
|
---|
2 |
1 | 1 | 2
| 0
|
---|
3 |
1 | 3 | 3
| 1
|
---|
4 |
2 | 6 | 4
| 4
|
---|
5 |
6 | 10 | 6
| 10
|
---|
6 |
16 | 16 | 12
| 20
|
---|
7 |
36 | 28 | 28
| 36
|
---|
8 |
72 | 56 | 64
| 64
|
---|
9 |
136 | 120 | 136
| 120
|
---|
10 |
256 | 256 | 272
| 240
|
---|
11 |
496 | 528 | 528
| 496
|
---|
12 |
992 | 1056 | 1024
| 1024
|
---|
13 |
2016 | 2080 | 2016
| 2080
|
---|
14 |
4096 | 4096 | 4032
| 4160
|
---|
15 |
8256 | 8128 | 8128
| 8256
|
---|
16 |
16512 | 16256 | 16384
| 16384
|
---|
17 |
32896 | 32640 | 32896
| 32640
|
---|
18 |
65536 | 65536 | 65792
| 65280
|
---|
19 |
130816 | 131328 | 131328
| 130816
|
---|
20 |
261632 | 262656 | 262144
| 262144
|
---|
Examples
The two binary strings of trace 0, subtrace 0 and length 4 are $\{0000, 1111\}$.
The two binary strings of trace 1, subtrace 0 and length 2 are $\{10, 01\}$.
The three binary strings of trace 0, subtrace 1 and length 3 are $\{ 011, 101, 110\}$.
The four binary strings of trace 1, subtrace 1 and length 4 are $\{0111, 1011, 1101, 1110\}$.
Enumeration (OEIS)
-
The number $S(n;t,s)$ can be computed from the following recurrence relation
\begin{align}
S(n;t,s) &= S(n-1;t,s) + S(n-1;t-1,s-(t-1)) \\
&= S(n-1;t,s) + S(n-1;t+1,s+t+1)).
\end{align}
-
Column (0,0) is OEIS A038503.
The value is $\binom{n}{0}+\binom{n}{4}+\binom{n}{8}+\cdots$ which has the closed form expression $(2^n+(1+i)^n+(1-i)^n)/4$, where $i=\sqrt{-1}$.
The $i$ can be eliminated to get $(2^n+2 \sqrt{2}^n \cos(\pi n/4)/4$.
The sequence has the rational generating function $(1-x)^3 /((1-x)^4 -x^4)$.
-
Column (0,1) is OEIS A038505.
The value is $\binom{n}{2}+\binom{n}{6}+\binom{n}{10}+\cdots$ which has the closed form expression $(2^n-(1+i)^n -(1-i)^n)/4$, where $i=\sqrt{-1}$.
The $i$ can be eliminated to get $(2^n-2 \sqrt{2}^n \cos(\pi n/4)/4$.
The sequence has the rational generating function $x^2 (1-x)/((1-x)^4 -x^4)$.
-
Column (1,0) is OEIS A038504.
The value is $\binom{n}{1}+\binom{n}{5}+\binom{n}{9}+\cdots$ which has the closed form expression $(2^n-i(1+i)^n+i(1-i)^n)/4$, wgere $i=\sqrt{-1}$.
The $i$ can be eliminated to get $(2^n+2 \sqrt{2}^n \sin(\pi n/4)/4$.
The sequence has the rational generating function $x(1-x)^2 /((1-x)^4 -x^4)$.
-
Column (1,1) is OEIS A00749.
The value is $\binom{n}{3}+\binom{n}{7}+\binom{n}{11}+\cdots$ which has the closed form expression $(2^n+i(1+i)^n-i(1-i)^n)/4$, where $i=\sqrt{-1}$.
The $i$ can be eliminated to get $(2^n-2 \sqrt{2}^n \sin(\pi n/4)/4$.
The sequence has the rational generating function $x^3 /((1-x)^4 -x^4)$.