Irreducible polynomials over GF(2) with given trace and subtrace
Let $p(x)$ be a polynomial of degree $n$.
The
trace of $p(x)$ is the coefficient of $x^{n-1}$.
The
subtrace of $p(x)$ is the coefficient of $x^{n-2}$.
| (trace,subtrace) |
$n$
| (0,0) | (0,1) |
(1,0) | (1,1) |
1 |
1 | 0 | 1 | 0
|
---|
2 |
0 | 0 | 0 | 1
|
---|
3 |
0 | 1 | 1 | 0
|
---|
4 |
1 | 0 | 1 | 1
|
---|
5 |
1 | 2 | 1 | 2
|
---|
6 |
2 | 2 | 3 | 2
|
---|
7 |
5 | 4 | 4 | 5
|
---|
8 |
6 | 8 | 8 | 8
|
---|
9 |
15 | 13 | 15 | 13
|
---|
10 |
24 | 24 | 24 | 27
|
---|
11 |
45 | 48 | 48 | 45
|
---|
12 |
85 | 80 | 85 | 85
|
---|
13 |
155 | 160 | 155 | 160
|
---|
14 |
288 | 288 | 297 | 288
|
---|
15 |
550 | 541 | 541 | 550
|
---|
16 |
1008 | 1024 | 1024 | 1024
|
---|
17 |
1935 | 1920 | 1935 | 1920
|
---|
18 |
3626 | 3626 | 3626 | 3654
|
---|
19 |
6885 | 6912 | 6912 | 6885
|
---|
20 |
13107 | 13056 | 13107 | 13107
|
---|
21 |
24940 | 24989 | 24940 | 24989
|
---|
22 |
47616 | 47616 | 47709 | 47616
|
---|
23 |
91225 | 91136 | 91136 | 91225
|
---|
24 |
174590 | 174760 | 174760 | 174760
|
---|
25 |
335626 | 335462 | 335626 | 335462
|
---|
Enumeration (OEIS)
-
The number $L(n;k)$ of length $n$ binary Lyndon words of density $k$ is
\[
L(n;k)=\frac{1}{n}\sum_{d\vert \gcd(n,k)} \mu(d)\binom{n/d}{k/d}.
\]
Let $S$ be a subset of $\{0,1,\ldots,n\}$ and let
\[
e(S)=\sum_{k\text{ in }S} L(n;k).
\]
-
Column (0,0) has value $e(\{k \text{ such that } k+n = 0 \pmod{4}\})$, which is OEIS A042980.
-
Column (0,1) has value $e(\{k \text{ such that } k+n = 1 \pmod{4}\})$, which is OEIS A042979.
-
Column (1,0) has value $e(\{k \text{ such that } k+n = 2 \pmod{4}\})$, which is OEIS A042981.
-
Column (1,1) has value $e(\{k \text{ such that } k+n = 3 \pmod{4}\})$, which is OEIS A042982.
References
- [CMR+03] K. Cattell, C. R. Miers, F. Ruskey, J. Sawada, and M. Serra. The number of irreducible polynomials over GF(2) with given trace and subtrace. J. Combin. Math.
Combin. Comput., 47:31–64, 2003.