Irreducible polynomials over GF(2) with given trace and subtrace

Let $p(x)$ be a polynomial of degree $n$. The trace of $p(x)$ is the coefficient of $x^{n-1}$. The subtrace of $p(x)$ is the coefficient of $x^{n-2}$.

(trace,subtrace)
$n$ (0,0)(0,1) (1,0)(1,1)
1 1010
2 0001
3 0110
4 1011
5 1212
6 2232
7 5445
8 6888
9 15131513
10 24242427
11 45484845
12 85808585
13 155160155160
14 288288297288
15 550541541550
16 1008102410241024
17 1935192019351920
18 3626362636263654
19 6885691269126885
20 13107130561310713107
21 24940249892494024989
22 47616476164770947616
23 91225911369113691225
24 174590174760174760174760
25 335626335462335626335462

Enumeration (OEIS)

References