Lyndon words over $GF(2)$ with given trace and subtrace

Here we consider the number $L(n;t,s)$ of length $n$ Lyndon words $a_1 a_2 \ldots a_n$ over the alphabet consisting of the elements of the field $GF(2)$ that have trace $t$ and subtrace $s$. The trace of a Lyndon word is the sum of its digits over the field, i.e., $t = a_1 + a_2 + \cdots + a_n$. The subtrace is the sum of the products of all $n(n-1)/2$ pairs of digits taken over the field, i.e., $s=\sum_{1\leq i\lt j\leq n} a_i a_j$. Note that $GF(2)=\mathbb{Z}_2$.

(trace,subtrace)
$n$ (0,0) (0,1) (1,0) (1,1)
1 101 0
2 001 0
3 011 0
4 011 1
5 121 2
6 222 3
7 544 5
8 868 8
9 151315 13
10 242427 24
11 454848 45
12 808585 85
13 155160155 160
14 288288288 297
15 550541541 550
16 102410081024 1024
17 193519201935 1920
18 362636263654 3626
19 688569126912 6885
20 130561310713107 13107

Examples

The one binary Lyndon word of trace 1, subtrace 0 and length 3 is $\{001\}$. The two binary Lyndon words of trace 0, subtrace 1 and length 5 are $\{00011, 00101\}$. The two binary Lyndon words of trace 0, subtrace 0 and length 6 are $\{001111, 010111\}$.

Enumeration (OEIS)