Elements of $GF(7^n)$ with given trace and subtrace

If $a$ is an element of $GF(7^n)$, then the (absolute) trace of $a$ is \[ \operatorname{tr}(a)=a+a^7+a^{49}+\cdots+a^{7^{n-1}}. \] Alternatively, we could define $\operatorname{tr}(a)$ to be the negation of the coefficient of $x^{n-1}$ in the (characteristic) polynomial \[ p(x) = (x - a) (x - a^7) (x - a^{49}) \cdots (x - a^{7^{n-1}}). \] The subtrace of $a$ is the coefficient of $x^{n-2}$ in $p(x)$. The coefficients of $p(x)$ are guaranteed to be elements of $GF(7)$, so the trace and subtrace are elements of $GF(7)$ (i.e., the value is $0,1,\ldots,6$).

(trace,subtrace)
$n$ (0,0) (0,1)
(0,2)
(0,4)
(0,3)
(0,5)
(0,6)
(1,0)
(2,0)
(3,0)
(4,0)
(5,0)
(6,0)
(1,1)
(2,4)
(3,2)
(4,2)
(5,4)
(6,1)
(1,2)
(2,1)
(3,4)
(4,4)
(5,1)
(6,2)
(1,3)
(2,5)
(3,6)
(4,6)
(5,5)
(6,3)
(1,4)
(2,2)
(3,1)
(4,1)
(5,2)
(6,4)
(1,5)
(2,6)
(3,3)
(4,3)
(5,6)
(6,5)
(1,6)
(2,3)
(3,5)
(4,5)
(5,3)
(6,6)
1 100 1000000
2 120 0012202
3 1366 66666136
4 494256 42565649424256
5 301350350 350350350350350350301
6 240123522450 2450240123522352245023522450
7 168071715016464 16807168071680716807168071680716807

Examples

Enumeration (OEIS)