Elements of $GF(5^n)$ with given trace and subtrace

If $a$ is an element of $GF(5^n)$, then the (absolute) trace of $a$ is \[ \operatorname{tr}(a)=a+a^5+a^{25}+\cdots+a^{5^{n-1}}. \] Alternatively, we could define $\operatorname{tr}(a)$ to be the negation of the coefficient of $x^{n-1}$ in the (characteristic) polynomial \[ p(x) = (x - a) (x - a^5) (x - a^{25}) \cdots (x - a^{5^{n-1}}). \] The subtrace of $a$ is the coefficient of $x^{n-2}$ in $p(x)$. The coefficients of $p(x)$ are guaranteed to be elements of $GF(5)$, so the trace and subtrace are elements of $GF(5)$ (i.e., the value is $0,1,\ldots,4$).

(trace,subtrace)
$n$ (0,0) (0,1)
(0,4)
(0,2)
(0,3)
(1,0)
(2,0)
(3,0)
(4,0)
(1,1)
(2,4)
(3,4)
(4,1)
(1,2)
(2,3)
(3,3)
(4,2)
(1,3)
(2,2)
(3,2)
(4,3)
(1,4)
(2,1)
(3,1)
(4,4)
1 1 0 0 1 0 0 0 0
2 1 0 2 0 2 2 0 1
3 1 6 6 6 6 1 6 6
4 25 30 20 30 25 30 20 20
5 125 100 150 125 125 125 125 125
6 625 650 600 625 650 600 600 650
7 3025 3150 3150 3150 3150 3150 3150 3025

Examples

Enumeration (OEIS)