Elements of $GF(3^n)$ with given trace and subtrace
If $a$ is an element of $GF(3^n)$, then the (absolute)
trace of $a$ is
\[
\operatorname{tr}(a)=a+a^3+a^9+\cdots+a^{3^{n-1}}.
\]
Alternatively, we could define $\operatorname{tr}(a)$ to be the negation of the coefficient of $x^{n-1}$ in the (characteristic) polynomial
\[
p(x) = (x - a) (x - a^3) (x - a^9) \cdots (x - a^{3^{n-1}}).
\]
The
subtrace of $a$ is the coefficient of $x^{n-2}$ in $p(x)$.
The coefficients of $p(x)$ are guaranteed to be elements of $GF(3)$, so the trace and subtrace are elements of $GF(3)$ (i.e., the value is 0, 1 or 2).
| (trace,subtrace) |
$n$
| (0,0)
| (0,1)
| (0,2)
| (1,0) (2,0)
| (1,1) (2,1)
| (1,2) (2,2)
|
1
| 1
| 0
| 0
| 1
| 0
| 0
|
2
| 1
| 2
| 0
| 0
| 1
| 2
|
3
| 3
| 0
| 6
| 3
| 3
| 3
|
4
| 9
| 12
| 6
| 9
| 12
| 6
|
5
| 21
| 30
| 30
| 30
| 21
| 30
|
6
| 99
| 72
| 72
| 81
| 81
| 81
|
7
| 225
| 252
| 252
| 225
| 252
| 252
|
8
| 729
| 702
| 756
| 756
| 729
| 702
|
9
| 2187
| 2268
| 2106
| 2187
| 2187
| 2287
|
10
| 6561
| 6480
| 6642
| 6561
| 6480
| 6642
|
11
| 19845
| 19602
| 19602
| 19602
| 19845
| 19602
|
12
| 58563
| 59292
| 59292
| 59049
| 59049
| 59049
|
13
| 177633
| 176904
| 176904
| 177633
| 176904
| 176904
|
14
| 531441
| 532170
| 530712
| 530712
| 531441
| 532170
|
15
| 1594323
| 1592136
| 1596510
| 1594323
| 1594323
| 1594323
|
16
| 4782969
| 4785156
| 4780782
| 4782969
| 4785156
| 4780782
|
Examples
-
Let $GF(3^2)$ be defined by the field extension $GF(3)[x]/(2+x+x^2)$.
The two elements of $GF(3^2)$ with trace 0 and subtrace 1 are $\{2+x, 1+2x\}$.
-
Let $GF(3^2)$ be defined by the field extension $GF(3)[x]/(2+x+x^2)$.
The two elements of $GF(3^2)$ with trace 1 and subtrace 2 are $\{1+x, 2x\}$.
-
Let $GF(3^3)$ be defined by the field extension $GF(3)[x]/(1+x+2x^2+x^3)$.
The three elements of $GF(3^3)$ with trace 2 and subtrace 1 are $\{2x, 1+x^2, 1+x+2x^2\}$.
Enumeration (OEIS)
-
Column (0,0) is OEIS A074000.
-
Column (0,1) is OEIS A074001.
-
Column (0,2) is OEIS A074002.
-
Column (1,0),(2,0) is OEIS A074003.
-
Column (1,1),(2,1) is OEIS A074004.
-
Column (1,2),(2,2) is OEIS A074005.