Elements of $GF(3^n)$ with given trace and subtrace

If $a$ is an element of $GF(3^n)$, then the (absolute) trace of $a$ is \[ \operatorname{tr}(a)=a+a^3+a^9+\cdots+a^{3^{n-1}}. \] Alternatively, we could define $\operatorname{tr}(a)$ to be the negation of the coefficient of $x^{n-1}$ in the (characteristic) polynomial \[ p(x) = (x - a) (x - a^3) (x - a^9) \cdots (x - a^{3^{n-1}}). \] The subtrace of $a$ is the coefficient of $x^{n-2}$ in $p(x)$. The coefficients of $p(x)$ are guaranteed to be elements of $GF(3)$, so the trace and subtrace are elements of $GF(3)$ (i.e., the value is 0, 1 or 2).

(trace,subtrace)
$n$ (0,0) (0,1) (0,2) (1,0)
(2,0)
(1,1)
(2,1)
(1,2)
(2,2)
1 1 0 0 1 0 0
2 1 2 0 0 1 2
3 3 0 6 3 3 3
4 9 12 6 9 12 6
5 21 30 30 30 21 30
6 99 72 72 81 81 81
7 225 252 252 225 252 252
8 729 702 756 756 729 702
9 2187 2268 2106 2187 2187 2287
10 6561 6480 6642 6561 6480 6642
11 19845 19602 19602 19602 19845 19602
12 58563 59292 59292 59049 59049 59049
13 177633 176904 176904 177633 176904 176904
14 531441 532170 530712 530712 531441 532170
15 1594323 1592136 1596510 1594323 1594323 1594323
16 4782969 4785156 4780782 4782969 4785156 4780782

Examples

Enumeration (OEIS)