Elements of $GF(2^n)$ with given trace and subtrace

If $a$ is an element of $GF(2^n)$, then the (absolute) trace of $a$ is \[ \operatorname{tr}(a)=a+a^2+a^4+\cdots+a^{2^{n-1}}. \] Alternatively, we could define $\operatorname{tr}(a)$ to be the negation of the coefficient of $x^{n-1}$ in the (characteristic) polynomial \[ p(x) = (x - a) (x - a^2) (x - a^4) \cdots (x - a^{2^{n-1}}). \] The subtrace of $a$ is the coefficient of $x^{n-2}$ in $p(x)$. The coefficients of $p(x)$ are guaranteed to be elements of $GF(2)$, so the trace and subtrace are elements of $GF(2)$ (i.e., the value is 0 or 1).

binomial coeffient sum (trace,subtrace)
n 01 23 (0,0)(0,1) (1,0)(1,1)
0 1000 0100
1 1100 1010
2 1210 1102
3 1331 1331
4 2464 6244
5 661010 610610
6 16121620 16162012
7 36282836 36282836
8 72645664 56726464
9 136136120120 136120136120
10 256272256240 256256240272
11 496528528496 496528528496
12 992102410561024 105699210241024
13 2016201620802080 2016208020162080
14 4096403240964160 4096409641604032
15 8256812881288256 8256812881288256
16 16512163841625616384 16256165121638416384
17 32896328963264032640 32896326403289632640
18 65536657926553665280 65536655366528065792
19 130816131328131328130816 130816131328131328130816
20 261632262144262656262144 262656261632262144262144
21 523776523776524800524800 523776524800523776524800
22 1048576104755210485761049600 1048576104857610496001047552
23 2098176209612820961282098176 2098176209612820961282098176
24 4196352419430441922564194304 4192256419635241943044194304

Examples

Enumeration (OEIS)

References